Sviluppo delle rinnovabili in Italia: una missione possibile, da condurre in maniera scientifica 04/04/2025
Risparmio energetico e cambiamento climatico: come l’efficienza energetica può contribuire alla sostenibilità globale 08/04/2025
Impianto termico o di climatizzazione (invernale/estiva): tipologie, caratteristiche e componenti 26/03/2025
Il vapore d’acqua modifica il comportamento dell’isolante termico, aumentando il valore di conduttività termica e incrementando quindi le perdite energetiche e il rischio di condensazioni. La conduttività termica equivalente dell’acqua è di 0,56 W/mK, un valore molto alto se paragonata ai valori dichiarati del polistirene estruso (XPS) 0,033-0,038 W/mK o a quelli dichiarati del poliuretano espanso (POLIISO®) 0,023-0,028 W/mK. Questa è la ragione per cui una piccola quantità di acqua, inferiore anche del 5% del volume complessivo dell’isolante, provoca un aumento (un peggioramento) considerevole della conduttività. La permeabilità al vapore di un materiale isolante può essere considerata, a seconda del tipo e delle condizioni di applicazione, una caratteristica positiva (permette il normale flusso del vapore) o negativa. In casi di ambienti con forte presenza di umidità o in presenza di importanti differenze di temperatura tra ambiente esterno ed interno si dovrà, in fase di progetto, prevedere l’eventuale inserimento di una barriera al vapore sul lato caldo della struttura per evitare i fenomeni di condensa all’interno della struttura stessa o dell’isolante. Per determinare la necessità o meno della barriera al vapore e lo spessore del materiale isolante necessario si utilizza generalmente il Metodo Grafico di Glaser. Il progettista può ad esempio adottare isolanti poliuretanici con rivestimenti impermeabili o semipermeabili (nella tabella sotto sono indicati i più comuni) che gli permettono di aumentare, in base alle condizioni di esercizio previste, la resistenza alla diffusione del vapore dello strato isolante. Il fattore di resistenza alla diffusione del vapore del poliuretano (µ= 30-150) è tale da rendere il materiale facilmente adattabile alle più comuni esigenze applicative. Di seguito i concetti basilari più importanti per comprendere il controllo del passaggio del vapore d’acqua attraverso i materiali e gli isolanti termici. Permeabilità al vapore di acqua (δp) La permeabilità al vaporeo acqueo misura il comportamento di un materiale al passaggio dell’umidità, cioè la quantità di vapore d’acqua che attraversa, per unità di tempo, un’unità di superficie del prodotto, per un campione di spessore unitario, quando c’è una differenza di pressione di vapore unitaria. Le differenti e complesse unità di misura usate in ogni Paese hanno dato luogo ad un fattore adimensionale (senza unità) che è il Fattore di Resistenza al vapore di acqua o fattore µ. Fattore di Resistenza al vapore di acqua (µ) δ aria (permeabilità al vapore di acqua dell’aria) µ = —————————————————————————- δ prodotto (permeabilità al vapore di acqua del prodotto) Il fattore adimensionale µ indica quante volte è maggiore la resistenza alla diffusione del vapore di acqua di un prodotto rispetto ad un volume di aria di uguale spessore (per l’aria µ =1). Per loro natura, tutti i materiali, eccetto il vetro ed i metalli, sono permeabili al vapore di acqua. Un buon isolante deve evitare però al massimo la penetrazione di vapore d’acqua, al fine di evitare un aumento significativo della conduttività termica durante il corso della vita di esercizio di un prodotto. Se consideriamo un isolante termico a cellule aperte e a basso fattore µ, in questo caso il vapore d’acqua penetrerà rapidamente nel materiale e lo inumidirà. Un materiale isolante a struttura cellulare chiusa, invece, e ad alto fattore µ, è caratterizzato da un’alta resistenza della penetrazione del vapore d’acqua. La tabella qui di seguito mette a confronto il comportamento di diversi materiali isolanti: Si può notare che il tipo di materiale col fattore di µ più elevato (∞) è il pannello di poliuretano espanso con supporti impermeabili: questo significa che non esiste pericolo di condensazione all’interno del materiale isolante; la schiuma rimane asciutta ed il potere isolante è costante nel tempo. Uno studio sperimentale su campioni di poliuretano espanso mostra come i valori di lambda medi per 25 anni oscillano tra 0,025 e 0,028 W/mK per i pannelli con rivestimenti permeabili e tra 0,023 e 0,025 per quelli con rivestimenti impermeabili. L’altro tipo di materiale isolante con µ elevato è il Polistirene estruso (XPS). EDILTEC® produce entrambe le linee di prodotti ad elevato µ: le lastre in polistirene estruso X-FOAM®e i pannelli POLIISO®, sia nella versione con rivestimenti impermeabili (POLIISO® AD, POLIISO®TEGOLA, POLIISO® PLUS) che permeabili (POLIISO® SB, POLIISO® VV, POLIISO® ED). Di seguito le caratteristiche dei prodotti della gamma EDILTEC® Chiaramente, a seconda della tipologia costruttiva, del tipo di applicazione, dell’umidità relativa dell’ambiente e degli sbalzi termici a cui è soggetto, si opterà per un prodotto isolante più o meno resistente al passaggio del vapore, abbinandolo o meno ad una barriera al vapore. E’ importante sempre effettuare il diagramma di Glaser e verificare che non ci sia mai condensa all’interno delle strutture e, in particolar modo, del materiale isolante, per evitare, come già ribadito, di non peggiorare il valore di conducibilità termica dell’isolante e per non alterare le sue caratteristiche specifiche. Di seguito un confronto sui contenuti d’acqua in % scaturiti dalle prove di assorbimento d’acqua totale e parziale (EN 12087 e EN 1609) per diversi tipi di materiali isolanti (i dati sono valori medi reperibili da schede tecniche presenti online). Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
18/04/2025 Efficienza energetica e smart building aumentano il valore degli immobili fino all'80% Rapporto TEHA: un immobile efficiente dal punto di vista energetico e dotato di tecnologie smart può ...
17/04/2025 I benefici indiretti dell’efficienza energetica per le imprese A cura di: Fabiana Valentini Una guida Enea evidenzia 13 benefici indiretti che impattano positivamente sul piano ambientale, sociale e di ...
16/04/2025 Sardegna 100% rinnovabile: scenario possibile entro il 2030 Secondo uno studio la Sardegna può diventare la prima regione italiana a coprire interamente la propria ...
16/04/2025 Europa e crisi climatica: il report Copernicus 2024 conferma un continente sempre più fragile A cura di: Raffaella Capritti Il report Copernicus 2024 rivela un’Europa sempre più esposta alla crisi climatica: caldo estremo, alluvioni e ...
15/04/2025 Le città europee accelerano sugli investimenti per transizione ecologica e infrastrutture sociali Le città europee aumentano gli investimenti per transizione ecologica, edilizia sociale e infrastrutture resilienti.
14/04/2025 Tecnologie energetiche emergenti: tra slancio innovativo e incertezze di mercato Analisi delle tecnologie energetiche emergenti secondo l'IEA, tra progressi, rischi e necessità di investimenti.
12/04/2025 Green Energy Day: impianti rinnovabili aperti e visitabili 12 aprile, Green Energy Day: una giornata per capire l'importanza della transizione energetica andando a visitare ...
11/04/2025 Pardee School esempio di sostenibilità: carbonio incorporato ridotto dell’87% A cura di: Tommaso Tautonico Nuova sede della Pardee School: scheletro in legno massello, tripli vetri con schermatura solare, pannelli fotovoltaici ...
10/04/2025 Energia: superato il 40% da fonti pulite. Il fotovoltaico guida la transizione Le rinnovabili superano il 40% dell’elettricità globale nel 2024. Record fotovoltaico, emissioni ancora alte per le ...
09/04/2025 Acciaio verde per una decarbonizzazione possibile e necessaria A cura di: Erika Bonelli Acciaio verde: pressioni industriali e inerzia politica possono rallentare la necessaria decarbonizzazione del settore.