Sviluppo delle rinnovabili in Italia: una missione possibile, da condurre in maniera scientifica 04/04/2025
Idrogeno verde e agrivoltaico avanzato: in Sicilia nascerà un polo rinnovabile guidato dall’AI 01/04/2025
Impianto termico o di climatizzazione (invernale/estiva): tipologie, caratteristiche e componenti 26/03/2025
Sistema radiante a soffitto Rossato Group Indice: Sistemi radianti per il raffrescamento: l’esempio dei controsoffitti radianti leggeri Soluzioni impiantistiche dei sistemi radianti per il raffrescamento Considerazioni conclusive sui sistemi radianti per raffrescamento Si descriverà in particolare il singolare meccanismo di formazione del Cooling Load (CL), cioè la potenza termica che è necessario sottrarre a un ambiente ad ogni istante al fine di mantenervi la temperatura prefissata. Ricerche sull’argomento condotte sia su controsoffitti che su pavimenti radianti hanno mostrato come il Cooling Load per questa tipologia di impianti sia formato da una quota dovuta agli apporti radiativi direttamente asportati dal pannello radiante (Direct Load, DL) e da una quota di carico sottratta all’ambiente (Room Load, RL) dall’azione raffrescante della superficie radiante fredda. Sistemi radianti per il raffrescamento: l’esempio dei controsoffitti radianti leggeri Per spiegare questa dinamica termica, risulta utile esemplificarla con riferimento ai controsoffitti radianti leggeri (in metallo o in cartongesso) che presentano una capacità di accumulo termico estremamente ridotta se confrontata con quella di un comune elemento strutturale. Si immagini ora che un flusso termico di origine radiativa (solare, proveniente da sorgenti luminose, etc.) colpisca direttamente il pannello radiante: l’energia termica da questo assorbita non viene accumulata, bensì istantaneamente asportata dal fluido freddo (acqua) che circola nelle serpentine del pannello stesso. Questa frazione di carico radiativo è definita carico diretto (Direct Load) sul pannello radiante. Con riferimento agli apporti termici radiativi, la dinamica termica di asportazione del pannello è quindi assimilabile a quella di un “pozzo termico” a temperatura imposta dal fluido termovettore (acqua). Dinamica di asportazione dei carichi termici da parte di un sistema radiante: dagli apporti termici (Heat Gain) al carico di raffrescamento (Cooling Load) La figura esemplifica a tal proposito il meccanismo di rimozione del carico attuato da un sistema radiante: si evidenzia in particolare la quota di carico diretto. Il pannello asporta pertanto una quota degli apporti termici radiativi in maniera istantanea, cioè prima che questa possa divenire carico ambiente, come avviene invece nel caso di un sistema di raffrescamento tradizionale. Dinamica di asportazione dei carichi termici da parte di un sistema tradizionale: dagli apporti termici (Heat Gain) al carico di raffrescamento (Cooling Load) In un sistema di raffrescamento tradizionale (si pensi, per esempio, di impiegare dei ventilconvettori al posto di un sistema radiante), l’intera quota radiativa viene prima accumulata dalle componenti capacitive dell’ambiente (pareti, mobilio, etc.) per poi trasformarsi in carico ambiente (Room Load, RL), come schematizzato in figura. E’ ora interessante esaminare quali siano gli effetti di questa peculiarità nella rimozione dei carichi termici sopra illustrata sul dimensionamento del sistema impiantistico. Soluzioni impiantistiche dei sistemi radianti per il raffrescamento A tal proposito, si confrontano in particolare tre soluzioni impiantistiche: impianto a tutt’aria, impianto misto controsoffitto radiante e aria primaria, impianto misto pavimento radiante e aria primaria. Le tre soluzioni sono confrontate in termini di potenza di raffrescamento di picco da rimuovere da un locale caratterizzato da una capacità termica medio-alta, e con apporti termici sensibili totali (radiativi e convettivi) pari a 150 W/m2. Le potenze termiche nei tre casi sono presentate in figura 3: pur essendo il caso presentato puramente indicativo (è ovvio le quote di apporti radiativo e convettivo che compongono il carico di raffrescamento dipendono dalla specificità di ogni progetto), esso è pienamente esaustivo per spiegare la diversa modalità con cui si compone il Cooling Load nei tre casi. In Figura 3 sono rappresentati il carico di raffrescamento (Cooling Load), il carico da rimuovere dal locale (Room Load) e il carico radiativo diretto rimosso dal sistema impiantistico (Direct Load) Cooling Load, Room Load e Direct Load a parità di Heat Gain in 3 sistemi a confronto (tutt’aria, misto con controsoffitto radiante, misto con pavimento radiante). Nel caso del sistema a tutt’aria, il Direct Load è nullo mentre il Room Load e il Cooling Load coincidono: tutti gli apporti termici prima si trasformano in carico ambiente e poi sono rimossi dal sistema. Il caso opposto è rappresentato dal sistema a pavimento radiante, il quale avendo una elevata propensione a rimuovere direttamente i carichi solari, e radiativi in genere, che incidono direttamente su di esso è caratterizzato da un valore elevato di Direct Load (per visualizzare il fenomeno, si pensi alla radiazione solare che entrata dalla finestra incide sul pavimento che prima la assorbe e poi si trasforma in Direct Load). Avendo una quota di Direct Load significativa, il corrispondente Room Load assume il valore minimo rispetto ai tre sistemi esaminati. Il Cooling Load assume invece il valore massimo in quanto la quota radiativa di Direct Load non ha subito l’azione di smorzamento da parte delle componenti capacitive del locale. Il caso del controsoffitto radiante è intermedio ai due sopra descritti. Considerazioni conclusive sui sistemi radianti per raffrescamento Per effetto del Direct Load, il pavimento radiante è il sistema che istantaneamente rimuove un carico termico maggiore e conseguentemente avrà bisogno di essere alimentato da una potenza frigorifera opportunamente dimensionata. E’ ben noto che la capacità di raffrescamento dei sistemi radianti in termini di rimozione del Room Load è limitata dalla minima temperatura superficiale di esercizio vincolata dall’evitare fenomeni di condensa superficiale (la eventuale quota eccedente di Room Load è rimossa istante per istante dal contributo dell’aria primaria). Con riferimento all’affermazione precedente, è da tenere sempre ben presente che soprattutto in presenza di elevati carichi solari la capacità di raffrescamento dei sistemi radianti non è stabilità dalla sola quota “ambientale” (Room Load) ma dalla somma di Room Load e Direct Load. Consiglia questo approfondimento ai tuoi amici Commenta questo approfondimento
04/04/2025 Un nuovo boom fotovoltaico 2025: la Cina accelera, il mondo insegue Boom del fotovoltaico globale: nel 2025 si prevede che la Cina triplichi la capacità produttiva. Scenari, ...
03/04/2025 ITALIA Solare Tour 2025: sei tappe per accelerare la transizione energetica attraverso il fotovoltaico Sei tappe, sei focus tematici: è partito il Tour 2025 di ITALIA Solare per accelerare la ...
03/04/2025 Italian Geothermal Forum: la geotermia protagonista della transizione energetica italiana A cura di: Erika Bonelli Gli esiti dell'Italian Geothermal Forum 2025, le strategie per lo sviluppo della geotermia in Italia e ...
02/04/2025 Rete elettrica UE: servono investimenti per evitare il blackout della transizione energetica La rete elettrica dell’UE è obsoleta e inadatta a sostenere la transizione energetica. Servono investimenti massicci, ...
01/04/2025 ISH 2025: digitalizzazione e sostenibilità per l'edilizia del futuro A cura di: Laura Murgia Tecnologia, innovazione e soluzioni intelligenti hanno caratterizzato ISH 2025, appuntamento imprescindibile per il settore HVAC.
31/03/2025 La Giornata internazionale Rifiuti Zero 2025 dedicata alla moda e ai tessuti A cura di: Fabiana Valentini Si celebra il 30 marzo lo Zero Waste Day 2025 che si concentra sul mondo della ...
29/03/2025 Ora Legale 2025: torna domenica 30 marzo. Quanto si risparmia davvero e perché potrebbe durare tutto l’anno A cura di: Raffaella Capritti Tra sabato 30 e domenica 31 marzo torna l'ora legale. Quanto potrebbero risparmiare gli italiani sulle ...
28/03/2025 Molti ghiacciai non sopravviveranno al secolo A cura di: Raffaella Capritti Molti ghiacciai, incluse le meraviglie glaciali italiane, non sopravviveranno alla fine di questo secolo.
27/03/2025 Crescita record per le rinnovabili: +585 GW nel 2024. Ma non basta IRENA segnala un +585 GW di capacità rinnovabile nel 2024. Serve +16,6% annuo per raggiungere gli ...
26/03/2025 Fondi PNRR per le Comunità Energetiche: proroga al 30 novembre 2025 Il MASE proroga al 30/11/2025 i fondi PNRR per le Comunità Energetiche Rinnovabili nei piccoli comuni ...